Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Ahmed Mahjoub, ${ }^{\text {a* }}$ Hédi
Zantour, ${ }^{\text {b }}$ Serge Masson, ${ }^{\text {c }}$
Monique Saquet ${ }^{c}$ and
Marie-Thérèse
Averbuch-Pouchot ${ }^{\text {d }}$

${ }^{\text {a }}$ Université de Tunis II, Faculté des Sciences, Laboratoire des Composés Thioorganiques, Département de Chimie, 7021 Zarzouna, Bizerte, Tunisia, ${ }^{\text {b }}$ Université de Tunis II, Faculté des Sciences, Laboratoire de Synthèse Organique, Campus Universitaire, 1060 Tunis, Tunisia, 'Laboratoire de Chimie des Composés Thioorganiques, ISMRA, Université de Caen, UMR CNRS 6507, 6 Boulevard du Maréchal Juin, F-14050 Caen Cedex, France, and dEDSS Bâtiment Chimie Recherche, BP53, 38041
Grenoble, Cedex 09, France

Correspondence e-mail:
ahmed.mahjoub@fsb.rnu.tn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
Disorder in main residue
R factor $=0.038$
$w R$ factor $=0.061$
Data-to-parameter ratio $=20.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

A dithietane of 2-methylpropanedithioic acid

Under the action of $\mathrm{BF}_{3} \cdot \mathrm{Me}_{2} \mathrm{O}$, 2-methylpropanedithioic acid does not give the expected adamantanoid product but the trans-2,4-diisopropyl-2,4-bis[(2-methyl-1-thioxo)propylsulfan-yl]-1,3-dithietane. The X-ray structure of the centrosymmetric title compound confirms the trans conformation of the dithietane molecule.

Comment

We recently described the action of $\mathrm{BF}_{3} \cdot \mathrm{Me}_{2} \mathrm{O}$ on propanedithioic acid (Mahjoub \& Zantour, 2000) and butanedithioic acid (Mahjoub \& Zantour, 2001). Another linear aliphatic dithioacid (ethanedithioic acid) was also treated in the same manner. In all cases we obtained a tetraalkyl hexathiaadamantanoid compound.

(I)

The aim of the present work is to investigate the action of this Lewis acid $\mathrm{BF}_{3} \cdot \mathrm{Me}_{2} \mathrm{O}$, using the same conditions, on a branched aliphatic dithioacid (2-methylpropanedithioic acid). This reaction occurs with a large evolution of $\mathrm{H}_{2} \mathrm{~S}$ and the formation of the dithietane, (I), as shown in the reaction scheme. A similar compound was obtained by reaction of the same dithioacid with dicyclohexylcarbodiimide (Kato et al., 1982). The crystal structure determination was undertaken to establish the conformation of the reaction product, (I), and to understand the process of its formation.

The atomic arrangement of the title compound (Fig. 1) is centrosymmetric about the mid-point of the $\mathrm{S} 3-\mathrm{S} 3^{\mathrm{i}}$ vector, creating a planar, almost square central ring [(i): $1-x,-y$, $1-z]$. The angle $\mathrm{S} 3-\mathrm{C} 5-\mathrm{S} 3^{\mathrm{i}}$ is 95.54 (6) ${ }^{\circ}$. The tetrahedral unit C5,S2,S3,C6,S3 ${ }^{i}$ is mainly characterized by three very similar $\mathrm{C}-\mathrm{S}$ distances ranging from 1.827 to $1.839 \AA$ and one $\mathrm{C} 5-\mathrm{C} 6$ distance of $1.539 \AA$. In spite of this apparent distortion, the average angle $\mathrm{C} 6-\mathrm{C} 5-\mathrm{S}$ in this tetrahedron, 108.7°, is close to the theoretical value for a regular tetrahedron. The other interatomic distances and bond angles are in accordance with expected values (Allen et al., 1987).

Experimental

2-Methylpropanedithioic acid ($1.8 \mathrm{~g}, 0.0015 \mathrm{~mol}$), prepared according to a method described by Beiner \& Thuillier (1972), was dissolved in

Received 8 December 2002
Accepted 7 February 2003
Online 31 March 2003

10 ml of hexane. Boron trifluoride dimethyletherate ($3.42 \mathrm{~g}, 0.03 \mathrm{~mol}$) was then added. The mixture was cooled down to 253 K . After two weeks, crystals of the crude dithietane were collected by filtration. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from an acetone solution.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~S}_{6} \\
& M_{r}=412.76 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=8.923(2) \AA \\
& b=6.082(2) \AA \\
& c=19.828(5) \AA \\
& \beta=93.29(2)^{\circ} \\
& V=1074.3(4) \AA^{3} \\
& Z=2
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.276 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=10.0-15.5^{\circ} \\
& \mu=0.63 \mathrm{~mm}^{-1} \\
& T=293 \mathrm{~K} \\
& \text { Square prism, yellow } \\
& 0.22 \times 0.20 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4

 diffractometer ω scansAbsorption correction: none

2261 reflections with $I>2.5 \sigma(I)$

$$
\theta_{\max }=30.0^{\circ}
$$

$$
h=-12 \rightarrow 12
$$

$$
k=0 \rightarrow 8
$$

$$
l=0 \rightarrow 27
$$

3473 measured reflections
3084 independent reflections
$R_{\text {int }}=0.014$

Refinement

Refinement on F
H -atom parameters not refined
$R=0.038$
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00036\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\max }=0.006$
$\Delta \rho_{\max }=0.39 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}$
$w R=0.061$
$S=1.49$
2261 reflections
109 parameters

2 standard reflections every 120 minutes intensity decay: 0.1%

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

S1-C4	$1.630(2)$	$\mathrm{C} 1-\mathrm{C} 3$	$1.483(5)$
$\mathrm{S} 2-\mathrm{C} 4$	$1.721(2)$	$\mathrm{C} 1-\mathrm{C} 4$	$1.529(3)$
$\mathrm{S} 2-\mathrm{C} 5$	$1.827(2)$	$\mathrm{C} 2-\mathrm{C} 2^{\prime}$	$0.92(1)$
$\mathrm{S} 3-\mathrm{C} 5$	$1.827(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.541(2)$
$\mathrm{S} 3-\mathrm{C} 5^{\mathrm{i}}$	$1.839(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.518(3)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.460(8)$	$\mathrm{C} 6-\mathrm{C} 8$	$1.516(3)$
$\mathrm{C} 1-\mathrm{C} 2^{\prime}$	$1.68(1)$		
$\mathrm{C} 4-\mathrm{S} 2-\mathrm{C} 5$	$105.24(9)$	$\mathrm{S} 1-\mathrm{C} 4-\mathrm{C} 1$	$125.4(2)$
$\mathrm{C} 5-\mathrm{S} 3-\mathrm{C} 5^{\mathrm{i}}$	$85.40(8)$	$\mathrm{S} 2-\mathrm{C} 4-\mathrm{C} 1$	$109.1(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 2^{\prime}$	$33.2(4)$	$\mathrm{S} 2-\mathrm{C} 5-\mathrm{S} 3$	$111.51(9)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 3$	$124.2(4)$	$\mathrm{S} 2-\mathrm{C} 5-\mathrm{S} 3^{\mathrm{i}}$	$106.14(8)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	$113.4(4)$	$\mathrm{S} 2-\mathrm{C} 5-\mathrm{C} 6$	$110.8(1)$
$\mathrm{C}^{2}-\mathrm{C} 1-\mathrm{C} 3$	$102.4(4)$	$\mathrm{S} 3-\mathrm{C} 5-\mathrm{S} 3^{\mathrm{i}}$	$94.60(8)$
$\mathrm{C}^{2}-\mathrm{C} 1-\mathrm{C} 4$	$105.3(4)$	$\mathrm{S} 3-\mathrm{C} 5-\mathrm{C} 6$	$118.2(1)$
$\mathrm{C} 3-\mathrm{C} 1-\mathrm{C} 4^{\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 2^{\prime}}$	$109.9(3)$	$\mathrm{S} 3^{\mathrm{i}}-\mathrm{C} 5-\mathrm{C} 6$	$114.1(1)$
$\mathrm{C} 1-\mathrm{C} 2^{\prime}-\mathrm{C} 2$	$86.6(9)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$113.0(2)$
$\mathrm{S} 1-\mathrm{C} 4-\mathrm{S} 2$	$60.3(9)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 8$	$110.5(2)$

Symmetry code: (i) $1-x,-y, 1-z$.
The H atoms were located in a difference Fourier map and introduced in calculated positions. Owing to the large displacement ellipsoid components, atom C2 was considered disordered and split into two positions, C 2 and C^{\prime}. The refinement of the occupancy

Figure 1
ORTEPIII drawing (Burnett \& Johnson, 1996), showing the molecular structure of the title compound and the numbering scheme $(35 \%$ probability displacement ellipsoids).
factors led to almost equipartition, with occupancy factors of 0.55 and 0.45 for C 2 and C^{\prime}, respectively.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: teXsan (MSC, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: teXsan (Molecular Structure Corporation, 1995); software used to prepare material for publication: ORTEPIII (Burnett \& Johnson, 1996).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Beiner, J. M. \& Thuillier, A. (1972). C. R. Acad. Sci, 274C, 642-645.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Kato, S., Shibahashi, H., Katada, T., Takagi, T., Noda, I., Mizuta, M. \& Goto, M. (1982). Liebigs. Ann. Chem. 7, 1229-1244.

Mahjoub, A. \& Zantour, H. (2000). Z. Kristallogr. New Cryst. Struct. 215, 577578.

Mahjoub, A. \& Zantour, H. (2001). Z. Kristallogr. New Cryst. Struct. 216, 271272.

Molecular Structure Corporation (1995). teXsan. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. (Present address: 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.)

